The expression secθ - ((tan^2)(θ)/(sec)(θ)) simplifies to what expression?−tan θ−cot θcos θsec θ

Given the expression
[tex]sec(\theta)-\frac{tan^2(\theta)}{sec(\theta)}[/tex]express in sen and cos terms
[tex]\frac{1}{cos(\theta)}-\frac{\frac{sin^2(\theta)}{cos^2(\theta)}}{\frac{1}{cos(\theta)}}[/tex][tex]\frac{1}{cos(\theta)}-\frac{sin^2(\theta)}{cos^(\theta)}[/tex][tex]\frac{1-sin^2(\theta)}{cos^(\theta)}[/tex][tex]\frac{cos^2(\theta)}{cos^(\theta)}[/tex][tex]cos^(\theta[/tex]then the correct answer is option C
Cos (angle)