I need help please and thank you and you have to graph it

From the graph provided we can determine two points which are;
[tex]\begin{gathered} (x_1,y_1)=(0,-3) \\ (x_2,y_2)=(2,0) \end{gathered}[/tex]For the equation of the line given in slope-intercept form which is;
[tex]y=mx+b[/tex]We would begin by calculating the slope which is;
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]We can now substitute the values shown above and we'll have;
[tex]\begin{gathered} m=\frac{(0-\lbrack-3\rbrack)}{2-0} \\ m=\frac{0+3}{2} \\ m=\frac{3}{2} \end{gathered}[/tex]Now we have the slope of the line as 3/2, we can substitute this into the equation and we'll have;
[tex]\begin{gathered} y=mx+b \\ \text{Where;} \\ x=0,y=-3,m=\frac{3}{2} \end{gathered}[/tex]We now have the equation as;
[tex]\begin{gathered} -3=\frac{3}{2}(0)+b \\ -3=0+b \\ b=-3 \end{gathered}[/tex]We now have the y-intercept as -3. The equation now is;
[tex]\begin{gathered} \text{Substitute m and b into the equation,} \\ y=mx+b \\ y=\frac{3}{2}x-3 \end{gathered}[/tex]The graph of this is now shown below;
We shall now draw lines to indicate the 'rise' and 'run' of this graph.
ANSWER
Observe carefully that the "Rise" is the movement along the y-axis (3 units), while the "Run" is the movement along the x-axis (2 units).
This clearly defines the slope of the equation that is;
[tex]\frac{\Delta y}{\Delta x}=\frac{Change\text{ in y}}{Change\text{ in x}}=\frac{3}{2}[/tex]