Respuesta :

[tex]\begin{gathered} a=5.703\text{ }\frac{m}{s^2} \\ T=3.891\text{N} \end{gathered}[/tex]

Explanation

Step 1

free body diagram

so, for m1

m1= 10 kg

so,

[tex]\begin{gathered} \sum ^{forces}_{\text{ y}}=T_1-mg=ma \\ T_1=m_1(a+g)\Rightarrow equation(1) \\ T_1=10(a+g) \end{gathered}[/tex]

and for m2

[tex]\begin{gathered} \sum ^{forces}_{\text{ x}}=m_2g\sin (37)-T_1=m_2a \\ \text{solve for T}_1 \\ T_1=m_2g\sin (37)-m_2a \\ \text{replace} \\ T_1=(3.6\text{ kg)(9.8 }\frac{m}{s^2})\sin 37-3.6a \\ T_1=21.23\text{ -}3.6a\Rightarrow eq(2) \end{gathered}[/tex]

Step 2

now, replace in equaiotn (1) and solve for a

[tex]\begin{gathered} T_1=m_1(a+g)\Rightarrow equation(1) \\ 21.23\text{ -}3.6a=10(a+g) \\ 21.23\text{ -}3.6a=10a+10g \\ -7.2a=10a-98.1 \\ -17.2a=-98.1 \\ a=-\frac{98.1}{-17.2} \\ a=5.703\text{ }\frac{m}{s^2} \end{gathered}[/tex]

finally, replace in equation (2) to find Tension

[tex]\begin{gathered} T_1=21.23\text{ -}3.6a \\ T_1=21.23\text{ -}3.6(5.703) \\ T_2=3.891\text{N} \end{gathered}[/tex]

I hope this helps you

Ver imagen AlannaJ33627