Respuesta :

Using the law of Sines

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

Consider the given triangle

Let A = 27°, the a = 11

Let B = 34°, the b = x

Substitute the values into the sine rule formula

This gives

[tex]\frac{\sin27}{11}=\frac{\sin 34}{x}[/tex]

Cross multiply

[tex]x\times\sin 27=11\times\sin 34[/tex]

Divide both sides by sin 27

This gives

[tex]x=\frac{11\times\sin 34}{\sin 27}[/tex]

Solve for x

[tex]\begin{gathered} x=\frac{11\times0.5592}{0.4540} \\ x=\frac{6.1512}{0.4540} \\ x=13.55 \end{gathered}[/tex]

Therefore, the value of x is approximately 13.55