Exponential Decay
The model for the exponential decay of a quantity Mo is:
[tex]M=M_o\cdot e^{-\lambda t}[/tex]Where λ is a constant and t is the time.
The half-life of a radioactive isotope is the time it takes to halve its initial mass. It can be calculated by making M = Mo/2 and solving for t:
[tex]\begin{gathered} \frac{M_o}{2}=M_o\cdot e^{-\lambda t} \\ \text{Simplifying:} \\ e^{-\lambda t}=\frac{1}{2} \\ \text{Taking natural log:} \\ -\lambda t=-\log 2 \\ t=\frac{\log 2}{\lambda} \end{gathered}[/tex]It's required to calculate the remaining mass of an isotope of Mo = 175 gr after 5 half-lives have passed, that is. we must calculate M when t is five times the value calculated above.
Substituting in the model:
[tex]M=175gr\cdot e^{-\lambda\cdot\frac{5\log 2}{\lambda}}[/tex]Simplifying (the value of λ cancels out):
[tex]\begin{gathered} M=175gr\cdot e^{-5\log 2} \\ \text{Calculating:} \\ M=175gr\cdot0.03125 \\ M=5.46875gr \end{gathered}[/tex]Rounding to the nearest gram, 5 grams of the radioactive isotope will be left after the required time.