Knowledge CheckUse the distributive property to remove the parentheses.--7(-5w+x-3)X 5

The distributive property states that:
[tex]k\cdot\left(a+b+c\right?=k\cdot a+k\cdot b+k\cdot c.[/tex]In this problem, we have the expression:
[tex]-7\cdot(-5w+x-3)=(-7)\cdot(-5w+x-3).[/tex]Comparing this expression with the general expression of the distributive property, we identify:
• k = (-7),
,• a = -5w,
,• b = x,
,• c = -3.
Using the general expression for the distributive property with these values, we have:
[tex]\left(-7\right)\cdot(-5w)+\left(-7\right)\cdot x+\left(-7\right)\cdot(-3).[/tex]Simplifying the last expression, we get:
[tex]35w-7x+21.[/tex]AnswerApplying the distributive property to eliminate the parenthesis we get:
[tex]35w-7x+21[/tex]