Respuesta :

Explanation

The distributive property states that:

[tex]k\cdot\left(a+b+c\right?=k\cdot a+k\cdot b+k\cdot c.[/tex]

In this problem, we have the expression:

[tex]-7\cdot(-5w+x-3)=(-7)\cdot(-5w+x-3).[/tex]

Comparing this expression with the general expression of the distributive property, we identify:

• k = (-7),

,

• a = -5w,

,

• b = x,

,

• c = -3.

Using the general expression for the distributive property with these values, we have:

[tex]\left(-7\right)\cdot(-5w)+\left(-7\right)\cdot x+\left(-7\right)\cdot(-3).[/tex]

Simplifying the last expression, we get:

[tex]35w-7x+21.[/tex]Answer

Applying the distributive property to eliminate the parenthesis we get:

[tex]35w-7x+21[/tex]