Respuesta :

176.4

Explanation

as the triangle are similar we can set a proportion

Step 1

find the YZ value

a) let

[tex]ratio1=\frac{hypotenuse}{rigth\text{ side}}[/tex]

so,for triangle XZW

[tex]ratio=\frac{40+32}{28+YZ}[/tex]

and for triangle XYV

[tex]ratio=\frac{40}{28}[/tex]

as the ratios are equal, we can set a proportion

[tex]\frac{40+32}{28+YZ}=\frac{40}{28}[/tex]

b) now,solve for YZ

[tex]\begin{gathered} \frac{40+32}{28+YZ}=\frac{40}{28} \\ \frac{72}{28+YZ}=\frac{40}{28} \\ cross\text{ multiply} \\ 72*28=40(28+YZ) \\ 2016=1120+40YZ \\ subtract\text{ 1120 in both sides} \\ 2016-1120=1120+40YZ-1120 \\ 896=40YZ \\ divide\text{ bothsides by 40} \\ \frac{896}{40}=\frac{40YZ}{40} \\ 22.4=YZ \end{gathered}[/tex]

so

YZ=22.4

Step 2

find the length of the side WZ

a) let

[tex]ratio=\frac{hypotenuse\text{ }}{base}[/tex]

hence

[tex]\begin{gathered} ratio_1=\frac{40+32}{WZ}=\frac{72}{WZ} \\ ratio_2=\frac{40}{30} \end{gathered}[/tex]

set the proportion and solve for YZ

[tex]\begin{gathered} ratio_1=\text{ ratio}_2 \\ \frac{72}{WZ}=\frac{40}{30} \\ cross\text{ multiply} \\ 72*30=40WZ \\ 2160=40WZ \\ divide\text{ both sides by 40} \\ \frac{2160}{40}=\frac{40WZ}{40} \\ 54=WZ \end{gathered}[/tex]

Step 3

finally, find the perimeter of triangle XZW

Perimeter is the distance around the edge of a shape,so

[tex]Perimeter_{\Delta XZW}=XY+YZ+ZW+WV+VX[/tex]

replace and calculate

[tex]\begin{gathered} Per\imaginaryI meter_{\Delta XZW}=XY+YZ+ZW+WV+VX \\ Perimeter_{\Delta XZW}=28+22.4+54+32+40 \\ Perimeter_{\Delta XZW}=176.4 \end{gathered}[/tex]

therefore, the answer is

176.4

I hope this helps you