We are given that a coin is tossed and a die numbered from 1 through 8 is rolled. To determine the probability of tossing head and then rolling a number greater than 6 is given by the following formula:
[tex]P(\text{head and n>6)=p(head)}\cdot p(n>6)[/tex]This is because we are trying to determine the probability of two independent events. The probability of getting heads is given by:
[tex]P(\text{heads})=\frac{1}{2}[/tex]This is because there are two possible outcomes, heads or tails and we are interested in one of the outcomes.
Now we determine the probability of getting a number greater than 6 when rolling the dice. For this, there are 8 possible outcomes and we are interested in two of them, these are the numbers greater than 6 on the die (7, 8). Therefore, the probability is:
[tex]P(n>6)=\frac{2}{8}=\frac{1}{4}[/tex]Now we determine the product of both probabilities:
[tex]P(\text{head and n>6)=}\frac{1}{2}\times\frac{1}{4}=\frac{1}{8}[/tex]Now we rewrite the answer as a decimal:
[tex]P(\text{head and n>6)=}0.125[/tex]Therefore, the probability is 0.125.