One group (A) contains 155 people. One-fifth of the people in group A will be selected to win $20 fuel cards. There is another group (B) in a nearby town that will receivethe same number of fuel cards, but there are 686 people in that group. What will be the ratio of nonwinners in group A to nonwinners in group B after the selections aremade? Express your ratio as a fraction or with a colon.

Respuesta :

According to the information given in the exercise:

- Group A contains a total of 155 people.

- One-fifth of that people will be selected to win $20 fuel cards.

- The total number of people in Group B is 686.

Then, you can determine that the number of people that will be selected to win $20 fuel cards is:

[tex]winners_A=\frac{1}{5}(155)=31[/tex]

Therefore, the number of nonwinners in Group A is:

[tex]N.winners_A=155-31=124[/tex]

You know that Group B will receive the same number of fuel cards. Therefore, its number of nonwinners is:

[tex]N.winners_B=686-31=655[/tex]

Knowing all this information, you can set up the following ratio of nonwinners in Group A to nonwinners in Group B after the selections are made:

[tex]\frac{124}{655}[/tex]

Hence, the answer is:

[tex]\frac{124}{655}[/tex]