The volume of the right cone below is 36π units ^3. Find the value of x

The formula to find the volume of a cone is:
[tex]\begin{gathered} V=\frac{1}{3}\pi r{}{}^2h \\ \text{ Where} \\ V\text{ is the volume} \\ r\text{ is the radius} \\ h\text{ is the heigth} \end{gathered}[/tex]Then, we replace the know values in the above formula and solve for h.
[tex]\begin{gathered} V=36\pi \\ r=\frac{\text{ diameter}}{2}=\frac{6}{2}=3 \\ h=x \end{gathered}[/tex][tex]\begin{gathered} V=\frac{1}{3}\pi r^2h \\ 36\pi=\frac{1}{3}\pi(3)^2x \\ 36\pi=\frac{9\pi x}{3} \\ 36\pi=3\pi x \\ \text{ Divide by }3\pi\text{ from both sides} \\ \frac{36\pi}{3\pi}=\frac{3\pi x}{3\pi} \\ 12=x \end{gathered}[/tex]AnswerThe value of x is 12 units.