Respuesta :
Given:
The initial number of MNMs I have, x=200.
The number of MNM's eat by me every minute, p=15.
The initial number of MNMs my friend have, y=300.
The number of MNM's eat by friend every minute, q=25.
Let n be the number of minutes after which both will have the same number of MNM. Then, the amount of MNM remaining with me after n minutes is,
[tex]x-pn[/tex]The amount of MNM remaining with my friend after n minutes is,
[tex]y-qn[/tex]Equate the above expressions and substitute the values to find the number of minutes n.
[tex]\begin{gathered} x-pn=y-qn \\ 200-15n=300-25n \\ 25n-15n=300-200 \\ 10n=100 \\ n=\frac{100}{10} \\ n=10 \end{gathered}[/tex]Therefore, I will have the same number as my friend after 10 minutes.
The number of minutes taken by me to finish 200 MNM's is,
[tex]\begin{gathered} m=\frac{x}{p} \\ =\frac{200}{15} \\ =13\frac{5}{15} \\ =13\frac{1}{3}\text{minutes} \\ =13\text{minute}+\frac{1}{3}\min utes\times\frac{60\text{ seconds}}{1\text{ minute}} \\ =13\text{ minutes +20 seconds} \end{gathered}[/tex]So, I will take 13 minutes 20 seconds to finish the MNM's.
The number of minutes taken by my friend to finish 300 MNM's is,
[tex]\begin{gathered} k=\frac{y}{q} \\ =\frac{300}{25} \\ =12\text{ minutes} \end{gathered}[/tex]So, the friend will take 12 minutes to finish the MNM's.
So, I will finish