Respuesta :

Answer:

The coordinates of point B is;

[tex](5,-7)[/tex]

Explanation:

Given the attached image;

The coordinate of point A is;

[tex](8,-8)[/tex]

The coordinate of point C is;

[tex](-7,-3)[/tex]

If AB is 1/5 of AC;

[tex]\Delta x_{AB}=\frac{1}{5}(\Delta x_{AC})_{}_{}_{}_{}_{}_{}[/tex]

So; let (x,y) represent the coordinates of B;

[tex]\begin{gathered} (8-x)=\frac{1}{5}(8-(-7)) \\ 8-x=\frac{1}{5}(15) \\ 8-x=3 \\ x=8-3 \\ x=5 \end{gathered}[/tex]

The same applies to y coordinate;

[tex]\Delta y_{AB}=\frac{1}{5}(\Delta y_{AC})_{}[/tex]

So;

[tex]\begin{gathered} (-8-y)=\frac{1}{5}(-8-(-3)) \\ -8-y=\frac{1}{5}(-8+3) \\ -8-y=\frac{1}{5}(-5) \\ -8-y=-1 \\ y=-8+1 \\ y=-7 \end{gathered}[/tex]

Therefore, the coordinates of point B is;

[tex](5,-7)[/tex]