Writing and evaluating a function modeling continuous exponential growth or decay given doubling time or half-life

We were given the following details:
Half-life = 11 minutes
Initial amount = 598.8 grams
[tex]\begin{gathered} y=a_0e^{kt} \\ where\colon \\ y=amount \\ a_0=Initial\text{ }Amount \\ e=euler^{\prime}s\text{ }constant \\ k=decay\text{ }constant \\ t=time \end{gathered}[/tex]a)
We have the exact formula to be:
[tex]undefined[/tex]