Respuesta :

We are asked to determine the sinT. To do that let's remember that the function sine is defined as:

[tex]\sin x=\frac{opposite}{hypotenuse}[/tex]

In this case, we have:

[tex]\sin T=\frac{VU}{VT}[/tex]

To determine the value of VU we can use the Pythagorean theorem which in this case would be:

[tex]VT^2=VU^2+TU^2[/tex]

Now we solve for VU first by subtracting TU squared from both sides:

[tex]VT^2-TU^2=VU^2[/tex]

Now we take the square root to both sides:

[tex]\sqrt[]{VT^2-TU^2^{}}=VU[/tex]

Now we plug in the values:

[tex]\sqrt[]{(6)^2+(\sqrt[]{36^{}})^2}=VU[/tex]

Solving the squares:

[tex]\sqrt[]{36+36}=VU[/tex]

Adding the values:

[tex]\sqrt[]{2(36)}=VU[/tex]

Now we separate the square root:

[tex]\sqrt[]{2}\sqrt[]{36}=VU[/tex]

Solving the square root:

[tex]6\sqrt[]{2}=VU[/tex]

Now we plug in the values in the expression for sinT:

[tex]\sin T=\frac{6\sqrt[]{2}}{6}[/tex]

Now we simplify by canceling out the 6:

[tex]\sin T=\sqrt[]{2}[/tex]

And thus we obtained the expression for sinT.