Respuesta :

Given:

[tex]y+\sqrt[]{x}=-3x+(x-6)^2[/tex]

To evaluate the function at x=1, we simplify the given relation first:

[tex]\begin{gathered} y+\sqrt[]{x}=-3x+(x-6)^2 \\ Rearrange \\ y=-\sqrt[]{x}-3x+(x-6)^2 \end{gathered}[/tex]

We let:

y=f(x)

[tex]f(x)=-\sqrt[]{x}-3x+(x-6)^2[/tex]

We plug in x=1 into the above function:

[tex]\begin{gathered} f(x)=-\sqrt[]{x}-3x+(x-6)^2 \\ f(1)=-\sqrt[]{1}-3(1)+(1-6)^2 \\ \text{Simplify} \\ f(1)=-1-3_{}+25 \\ f(1)=21 \end{gathered}[/tex]

Therefore,

[tex]f(1)=21[/tex]