Respuesta :

SOLUTION

From the right triangle with two interior angles of 45 degrees, the two legs are equal in length, that is AB = BC

And from Pythagoras, the square of the hypotenuse (AC) is equal to the square of the other two legs or sides (AB and AC)

So this means

[tex]\begin{gathered} |AC|^2=|AB|^2+|BC|^2 \\ since\text{ AB = BC} \\ |AC|^2=2|AB|^2,\text{ also } \\ |AC|^2=2|BC|^2 \end{gathered}[/tex]

So from the first option

[tex]\begin{gathered} BC=10,AC=10\sqrt{2} \\ |AC|^2=(10\sqrt{2})^2=100\times2=200 \\ 2|BC|^2=2\times10^2=2\times100=200 \end{gathered}[/tex]

Hence the 1st option is correct, so its possible

The second option

[tex]\begin{gathered} AB=9,AC=18 \\ |AC|^2=18^2=324 \\ 2|AB|^2=2\times9^2=2\times81=162 \\ 324\ne162 \end{gathered}[/tex]

Hence the 2nd option is wrong, hence not possible

The 3rd option

[tex]\begin{gathered} BC=10\sqrt{3},AC=20 \\ |AC|^2=20^2=400 \\ 2|BC|^2=2\times(10\sqrt{3})^2=2\times100\times3=600 \\ 400\ne600 \end{gathered}[/tex]

Hence the 3rd option is wrong, not possible

The 4th option

[tex]\begin{gathered} AB=9\sqrt{2},AC=18 \\ |AC|^2=18^2=324 \\ 2|AB|^2=2\times(9\sqrt{2})^2=2\times81\times2=324 \\ 324=324 \end{gathered}[/tex]

Hence the 4th option is correct, it is possible

The 5th option

AB = BC

This is correct, and its possible

The last option

[tex]\begin{gathered} AB=7,BC=7\sqrt{3} \\ 7\ne7\sqrt{3} \end{gathered}[/tex]

This is wrong and not possible because AB should be equal to BC

Hence the correct options are the options bolded, which are

1st, 4th and 5th