ABCD is a rectangle. Find the coordinates of P, the midpoint of AC. [B is (18,12) ]

the coordinates of P is (9, 6)
Explanation:Coordinate of B = (18, 12)
In a rectangle, the opposite parallal sides are equal
AB = DC
AD = BC
We need to find the coordinates of A and C inoder to get P:
Since the x coordinate of B is 18, the x coordinate of C will also be 18
C is on the y axis, this means its y coordinate will be zero
Coordinate of C (x, y) becomes: (18, 0)
The y coordinate of B is 12, the y coordinate of A will also be 12
A is on the y axis. This means the x coordinate of A will be zero
Coordinate of A (x, y becomes): (0, 12)
To get P, we will apply the midpoint formula:
[tex]\text{Midpoint = }\frac{1}{2}(x_1+x_2),\text{ }\frac{1}{2}(y_1+y_2)[/tex]Using the points A (0, 12) and C (18, 0) to get coordinates of P:
[tex]\begin{gathered} x_1=0,y_1=12,x_2=18,y_2\text{ = 0} \\ \text{midpoint = }\frac{1}{2}(0+18),\text{ }\frac{1}{2}(12+0) \\ \text{midpoint = }\frac{1}{2}(18),\text{ }\frac{1}{2}(12) \\ \text{midpoint = (9, 6)} \end{gathered}[/tex]Hence, the coordinates of P is (9, 6)