Respuesta :

Answer:

The width of the TV is 41.84-in

Explanations:

The diagonal size of the TV, d= 48 in

The aspect ratio= 16 : 9

The aspect ratio is usually given in form of width : Height

Let the width = w

Let the height = h

The diagram looks like:

[tex]\begin{gathered} \frac{w}{h}=\text{ }\frac{16}{9} \\ h\text{ = }\frac{9w}{16} \end{gathered}[/tex]

Using the Pythagoras theorem:

[tex]\begin{gathered} d^2=h^2+w^2 \\ 48^2\text{ = (}\frac{9w}{16})^2+w^2 \\ 2304\text{ = }\frac{81w^2}{256}+w^2 \\ \text{Multiply through by 256} \\ 589824=81w^2+256w^2 \\ 589824\text{ = }337w^2 \\ w^2\text{ = }\frac{589824}{337} \\ w^2\text{ = 1750.22} \\ w\text{ = }\sqrt[]{1750.22} \\ w\text{ = 41.84 } \end{gathered}[/tex]

The width of the TV is 41.84-in

Ver imagen YeimiD763727