Respuesta :

Answer: [tex]3375m^{24}[/tex]Explanation:

Given:

[tex](15m^8)\placeholder{⬚}^3[/tex]

To find:

to simplify using laws of exponents

First, we need to expand the expression:

[tex]\begin{gathered} In\text{ exponent laws, a}^3\text{ = a }\times\text{ a }\times\text{ }a \\ \\ Applying\text{ same rule:} \\ (15m^8)\placeholder{⬚}^3\text{ = \lparen15m}^8)\times(15m^8)\text{ }\times(15m^8) \\ =\text{ 15 }\times\text{ }m^8\times\text{15 }\times\text{ }m^8\times\text{15 }\times\text{ }m^8\text{ } \\ \\ collect\text{ like terms:} \\ =\text{ 15 }\times\text{ 15 }\times15\text{ }\times m^8\times\text{ }m^8\times\text{ }m^8\text{ } \end{gathered}[/tex][tex]\begin{gathered} Simpify: \\ 15\times15\times15\text{ = 3375} \\ \\ m^8\text{ }\times\text{ m}^8\text{ }\times\text{ m}^8 \\ when\text{ multiplying exponents with same base, } \\ \text{we will pick one of the base and add the exponents together } \\ m^8\text{ }\times\text{ m}^8\text{ }\times\text{ m}^8\text{ = m}^{8+8+8} \\ =\text{ m}^{24} \end{gathered}[/tex][tex]\begin{gathered} 15\times15\times15\times m^8\times m^8\times m^8\text{ = 3375 }\times\text{ m}^{24} \\ \\ =\text{ 3375m}^{24} \end{gathered}[/tex]