Respuesta :

[tex](\frac{5}{13},y)[/tex]

This is given point in the fourth quadrant.

In this point, the adjacent is

[tex]\frac{5}{13}[/tex]

The opposite is y.

Find hypotenuse h using the pythagorean theorem:

[tex]\begin{gathered} h^2=(\frac{5}{13})^2+y^2 \\ h=\sqrt[]{\frac{25}{169}+y^2} \end{gathered}[/tex][tex]\sec (\theta)[/tex]

is equal to hypotenuse by adjacent.

[tex]\cot (\theta)[/tex]

is equal to adjacent by opposite.

In the fourth quadrant,

[tex]\sec \theta[/tex]

is positive , and

[tex]\cot \theta[/tex]

is negative.

So,

[tex]\begin{gathered} \sec \theta=\frac{h}{\frac{5}{13}} \\ =\frac{13\sqrt[]{\frac{25}{169}+y^2}}{5} \\ \cot \theta=\frac{\frac{5}{13}}{-y} \\ =-\frac{5}{13y} \end{gathered}[/tex]