Given data,
The height, H = 14 m
The diameter, D = 2.65 inch
The gauge pressure, P = 317.84 kPa
We need to calculate the speed of the water jet emerging from the nozzle.
Using Bernoulli's equation,
[tex]\begin{gathered} \frac{1}{2}\rho(v^2_n-v^2_p)=P_{gauge\text{ }}-\rho gh \\ (v^2_n-v^2_p)=(\frac{2}{\rho})P_{gauge}-2gh \\ v^2_n-(\frac{A_n}{A_p})^2v^2_n=(\frac{2}{\rho})P_{gauge}-2gh \\ v^2_n-(\frac{r_n}{r_p_{}})^4v^2_n=(\frac{2}{\rho})P_{gauge}-2gh \end{gathered}[/tex]
Further solved as,
[tex]\begin{gathered} v_n=\sqrt[]{\frac{(\frac{2}{\rho})P_{gauge}-2gh}{1-(\frac{r_n}{r_p})^4}} \\ v_n=\sqrt[]{\frac{(\frac{2}{1000})\times317.84\times10^3-2\times9.8\times14}{1-(\frac{1.325_{}}{1.745_{}})^4}} \\ v_n=\sqrt[]{\frac{635-274.4}{0.667}} \\ v_n=\sqrt[]{540.62} \end{gathered}[/tex]
Thus, the speed of the water jet is
[tex]v=23.25\text{ m/s}[/tex]