Answer:
0.834
Explanations:
The formula calculating the z-score is expressed as:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Given the following parameters
• x1 = 49.55
,
• x2 = 73.35
,
• mean μ = 57inches
,
• standard deviation σ = 7.3in
Convert the x-values to z-score
[tex]\begin{gathered} z_1=\frac{x_1-\mu}{\sigma} \\ z_1=\frac{49.55-57}{7.3} \\ z_1=-\frac{7.45}{7.3} \\ z_1=-1.02 \end{gathered}[/tex]
For z2;
[tex]\begin{gathered} z_2=\frac{73.35-57}{7.3} \\ z_2=\frac{16.35}{7.3} \\ z_2=2.24 \end{gathered}[/tex]
Determine the required probability
[tex]\begin{gathered} P(-1.02Hence the
probability that the
height of a randomly chosen child is between 49.55 and 73.35 inches is
0.834