Respuesta :

Let us write out the coordinates of the parent image given

Let us name the triangle ABC

[tex]\begin{gathered} A\rightarrow(1,5) \\ B\rightarrow(-3,2) \\ C\rightarrow(-5,4) \end{gathered}[/tex]

Therefore, the rule for the rotation 90 degrees counterclockwise about the origin is,

[tex]A(x,y)\rightarrow A^{\prime}(-y,x)[/tex]

Let us now obtain the coordinates of the transformed image

[tex]\begin{gathered} A(1,5)\rightarrow A^{\prime}(-5,1) \\ B(-3,2)\rightarrow B^{\prime}(-2,-3) \\ C(-5,4)\rightarrow C^{\prime}(-4,-5) \end{gathered}[/tex]

Hence, the coordinates of the transformed image are

[tex]\begin{gathered} A^{\prime}(-5,1) \\ B^{\prime}(-2,-3) \\ C^{\prime}(-4,-5) \end{gathered}[/tex]

Let us now plot the transformed image

Ver imagen ZyirQ790598