Answer:
d. 10, 24, 26
Explanation:
To identify the side lengths that form a right triangle, we check if it satisfies the Pythagorean theorem.
By the theorem:
[tex]\begin{gathered} a^2=b^2+c^2 \\ a\text{ is the hypotenuse, the longest side.} \end{gathered}[/tex]a. 12, 13, 16
[tex]\begin{gathered} 16^2=12^2+13^2 \\ 256=144+169 \\ 256\neq313 \end{gathered}[/tex]These side lengths do not form a right triangle.
b. 15, 20, 21
[tex]\begin{gathered} 21^2=15^2+20^2 \\ 441=225+400 \\ 441\neq625 \end{gathered}[/tex]These side lengths do not form a right triangle.
c. 9,40,42
[tex]\begin{gathered} 42^2=9^2+40^2 \\ 1764=81+1600 \\ 1764\neq1681 \end{gathered}[/tex]These side lengths do not form a right triangle.
d. 10, 24, 26
[tex]\begin{gathered} 26^2=10^2+24^2 \\ 676=100+576 \\ 676=676 \end{gathered}[/tex]These side lengths form a right triangle since both sides of the equation are the same.