Respuesta :

Given three side lengths form an acute obtuse or a right triangle 17, 21, & 28

Check Right triangle

[tex]\begin{gathered} Hyp^2=opp^2+adj^2 \\ 28^2=17^2+21^2 \\ 28^2\text{ = 289 +441} \\ 784\text{ }\ne\text{ 730} \end{gathered}[/tex]

Not a Right triangle

An obtuse triangle is a triangle with one obtuse angle and two acute angles. Since a triangle's angles must sum to 180° in Euclidean geometry.

Not an Obtuse triangle

[tex]\begin{gathered} \sin \text{ A= }\frac{opp}{hyp} \\ \sin \text{ A = }\frac{17}{28} \\ A=sin^{-1}\text{ }\frac{17}{28} \\ A=37.4^0\text{ (less than 90)} \end{gathered}[/tex][tex]\begin{gathered} \cos \text{ B = }\frac{adj}{hyp} \\ \cos \text{ B = }\frac{21}{28} \\ B=cos^{-1}\frac{21}{28} \\ B=41.4^0\text{ (less than 90)} \end{gathered}[/tex]

[tex]\begin{gathered} \tan \text{ C = }\frac{opp}{adj} \\ \tan \text{ C = }\frac{17}{21} \\ C=tan^{-1\text{ }}\frac{17}{21}\text{ } \\ C=38.9^0\text{ (less than 90) } \end{gathered}[/tex]

Hence it is acute angle because all angles are less than 90°

Ver imagen JerrellN364091