If we have 2 endpoints (x1, y1) and (x2, y2), the coordinates of the midpoint will be:
[tex]\begin{gathered} x=\frac{x_1+x_2}{2} \\ y=\frac{y_1+y_2}{2} \end{gathered}[/tex]Now, we know the coordinates of one endpoint (x1, y1) equal to (-8, -1) and the midpoint (x, y) equal to (0,3), so we can replace those values and solve for x2 and y2.
Then, for the x-coordinate, we get:
[tex]\begin{gathered} 0=\frac{-8+x_2}{2} \\ 0\cdot2=-8+x_2 \\ 0=-8+x_2 \\ 0+8=-8+x_2+8 \\ 8=x_2 \end{gathered}[/tex]At the same way, for the y-coordinate, we get:
[tex]\begin{gathered} 3=\frac{-1+y_2}{2} \\ 3\cdot2=-1+y_2 \\ 6=-1+y_2 \\ 6+1=-1+y_2+1 \\ 7=y_2 \end{gathered}[/tex]Therefore, the coordinates of the other endpoint are (8, 7)
Answer: (8, 7)