Answer:
x = 7, y = -4
(7, -4)
Explanation:
Given the below quadratic equation;
[tex]y=x^2-14x+45[/tex]To find the equation of the axis of symmetry, we'll use the below formula;
[tex]x=\frac{-b}{2a}[/tex]If we compare the given equation with the standard form of a quadratic equation, y = ax^2 + bx + c, we can see that a = 1, b = -14, and c = 45.
So let's go ahead and substitute the above values into our equation of the axis of symmetry;
[tex]\begin{gathered} x=\frac{-(-14)}{2(1)} \\ =\frac{14}{2} \\ \therefore x=7 \end{gathered}[/tex]To find the y-coordinate, we have to substitute the value of x into our given equation;
[tex]\begin{gathered} y=7^2-14(7)+45 \\ =49-98+45 \\ \therefore y=-4 \end{gathered}[/tex]