Respuesta :

Answer:

x = 7, y = -4

(7, -4)

Explanation:

Given the below quadratic equation;

[tex]y=x^2-14x+45[/tex]

To find the equation of the axis of symmetry, we'll use the below formula;

[tex]x=\frac{-b}{2a}[/tex]

If we compare the given equation with the standard form of a quadratic equation, y = ax^2 + bx + c, we can see that a = 1, b = -14, and c = 45.

So let's go ahead and substitute the above values into our equation of the axis of symmetry;

[tex]\begin{gathered} x=\frac{-(-14)}{2(1)} \\ =\frac{14}{2} \\ \therefore x=7 \end{gathered}[/tex]

To find the y-coordinate, we have to substitute the value of x into our given equation;

[tex]\begin{gathered} y=7^2-14(7)+45 \\ =49-98+45 \\ \therefore y=-4 \end{gathered}[/tex]