Respuesta :

• The Same roots

,

• The same axis of symmetry

1) If we compare two parabolas from this family, like:

[tex]\begin{gathered} f(x)=-1(x-4)(x-8) \\ g(x)=2(x-4)(x-8) \end{gathered}[/tex]

Note that the difference is in the leading coefficient "a".

2) Both parabolas will have the same roots, the same x-intercepts:

[tex]x_1=4,x_2=8[/tex]

In addition to this, we can state that both will share the same axis of symmetry:

[tex]\begin{gathered} f(x)=-1(x-4)(x-8) \\ f(x)=\quad -x^2+12x-32_{} \\ h=\frac{-12}{2(-1)}=6 \end{gathered}[/tex]

As well as:

[tex]\begin{gathered} g(x)=2(x-4)(x-8) \\ g(x)=2x^2-24x+64 \\ h=\frac{24}{2(2)}=6 \end{gathered}[/tex]

Hence, the answer is:

0. Same roots

,

1. Same axis of symmetry