Respuesta :

Given points (1,-3) and (5,-1).

Since the slope of the line passing through two points

[tex](x_1,y_1)(x_2,y_2)[/tex]

The slope of the equation is

[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ m=\frac{-1-(-3)}{5-1} \\ m=\frac{2}{4} \\ m=\frac{1}{2} \end{gathered}[/tex]

Therefore, the slope of the line is 1/2.

Now, use the slope and the point (1,-3) to find the y-intercept.

[tex]\begin{gathered} y=mx+c \\ -3=\frac{1}{2}\times1+c \\ c=-3-\frac{1}{2} \\ c=-\frac{-7}{2} \end{gathered}[/tex]

Write the equation in slope-intercept form as

[tex]\begin{gathered} y=mx+c \\ y=\frac{1}{2}x-\frac{7}{2} \end{gathered}[/tex]