Given the following Quadratic equation:
[tex]-3x=-10x^2-4[/tex]You can use the Quadratic formula to solve it:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]In this case, you need to add "3x" to both sides of the equation:
[tex]\begin{gathered} -3x+(3x)=-10x^2-4+(3x) \\ 0=-10x^2+3x-4 \end{gathered}[/tex]You can identify that:
[tex]\begin{gathered} a=-10 \\ b=3 \\ c=-4 \end{gathered}[/tex]Substituting values into the formula and evaluating, you get:
[tex]\begin{gathered} x=\frac{-3\pm\sqrt[]{3^2^{}-4(-10)(-4)}}{2(-10)} \\ \\ x_1=\frac{3}{20}-\frac{i}{20}\sqrt[]{151} \\ \\ x_2=\frac{3}{20}+\frac{i}{20}\sqrt[]{151} \end{gathered}[/tex]Answer
Complex roots:
[tex]\begin{gathered} x_1=\frac{3}{20}-\frac{i}{20}\sqrt[]{151} \\ \\ x_2=\frac{3}{20}+\frac{i}{20}\sqrt[]{151} \end{gathered}[/tex]