The general equation of a line is;
[tex]y\text{ = mx + b}[/tex]m is the slope and b is the y-intercept
To find the slope, we use the equation of the slope as follows;
[tex]\begin{gathered} m\text{ = }\frac{y_2-y_1}{x_2-x_1} \\ \\ (x_1,y_1)\text{ = (-8,13)} \\ (x_2,y_2)\text{ = (4,-2)} \\ \\ m\text{ = }\frac{-2-13}{4-(-8)}\text{ = }\frac{-15}{12}\text{ = }\frac{-5}{4} \end{gathered}[/tex]We have the partial equation as;
[tex]\begin{gathered} y\text{ = }\frac{-5}{4}x\text{ + b} \\ \\ \text{Substitute the point (-8,13)} \\ \text{x = -8 and y = 13} \\ \\ 13\text{ = }\frac{-5}{4}(-8)\text{ + b} \\ \\ 13\text{ = 10 + b} \\ b\text{ = 13-10 = 3} \end{gathered}[/tex]We have the complete equation as;
[tex]y\text{ =}\frac{-5}{4}x\text{ + 3}[/tex]