Respuesta :

to solve this question, we need to difine our variables

we have values for end points as

x1 = -8

y1 = 4

x2 = -4

y2 = -8

next we can find the slope of the equation

[tex]\begin{gathered} \text{slope}=\frac{y_2-y_1}{x_2-x_1} \\ \text{slope}=\frac{-8-4}{-4-(-8)} \\ \text{slope}=\frac{-12}{4} \\ \text{slope}=-3 \end{gathered}[/tex]

step 2

let's find the mid-point using mid-point formula

[tex]\begin{gathered} md=\frac{x_1+x_2}{2},\frac{y_2+y_1}{2} \\ md=\frac{-8+(-4)}{2},\frac{-8+4}{2} \\ md=-6,-2 \end{gathered}[/tex]

mid-point = (-6, -2)

now we know the perpendicular line travels (-6 , -2) and has a slope of -3

equation of a straight line => y = mx + c

we can solve for c to find the equation.

[tex]\begin{gathered} y=mx+c \\ -2=(-3)(-6)+c \\ -2=18+c \\ c=-2-18 \\ c=-20 \end{gathered}[/tex]

note: m = slope

c = intercept

the equation of the perpendicular bisector can be written as

y = -3x - 20

[tex]y=-3x-20[/tex]