Respuesta :

We have to solve:

[tex]\begin{gathered} 2^x-3=(x-6)^2-4_{} \\ 2^x-3+4=(x-6)^2 \\ 2^x+1=(x-6)^2 \end{gathered}[/tex]

We can not write a explicit expression to find the value of x, but we can test each option to see which one is correct:

[tex]\begin{gathered} x=5 \\ 2^5+1=(5-6)^2 \\ 33=(-1)^2\longrightarrow\text{Not true} \end{gathered}[/tex][tex]\begin{gathered} x=3 \\ 2^3+1=(3-6)^2 \\ 8+1=(-3)^2 \\ 9=9\longrightarrow\text{True} \end{gathered}[/tex][tex]\begin{gathered} x=4 \\ 2^4+1=(4-6)^2 \\ 17=(-2)^2\longrightarrow\text{Not true} \end{gathered}[/tex][tex]\begin{gathered} x=-2 \\ 2^{-2}+1=(-2-6)^2 \\ \frac{1}{4}+1=(-8)^2\longrightarrow\text{Not true} \end{gathered}[/tex]

Answer: x=3