Respuesta :

Given the complex number : -64 i

To find the cube roots, we will use the formula:

[tex]\sqrt[3]{r}(\cos \frac{\theta+2\pi k}{3}+i\sin \frac{\theta+2\pi k}{3})[/tex]

k = 0 , 1 , 2

So,

[tex]r=-64i=64\angle270[/tex]

So,

[tex]\sqrt[3]{64}=4[/tex]

and the angles will be :

[tex]\begin{gathered} \frac{\theta+2\pi k}{3}=\frac{\theta+360k}{3} \\ k=0,\frac{\theta+360\cdot0}{3}=\frac{270}{3}=90 \\ \\ k=1,\frac{\theta+360\cdot1}{3}=\frac{270+360}{3}=210 \\ \\ k=2,\frac{\theta+360\cdot2}{3}=\frac{270+720}{3}=330 \end{gathered}[/tex]

so, the cube roots of the -64i are:

[tex]\begin{gathered} 4(\cos 90+i\sin 90) \\ 4(\cos 210+i\sin 210) \\ 4(\cos 330+i\sin 330) \end{gathered}[/tex]

So, the answer is option C