a runner ran 100 meters in 10.49 seconds. using dimensional analysis what is the miles per hour. my teacher said its 21.3 mph. How did she get that?

Respuesta :

[tex]\begin{gathered} \frac{100}{10.49}\frac{m}{s}\text{ we must convert meter to miles and seconds to hours.} \\ We\text{ know that} \\ 1\text{mile}=1609m \\ 1hr=3600\text{ s} \\ Fromtheserelations,y\text{ou can note that, } \\ \frac{1mile}{1609m}=1 \\ \frac{3600s}{1hr}=1 \\ \text{Then, we can apply the trick:} \\ \frac{100}{10.49}\frac{m}{s}=\frac{100}{10.49}\frac{m}{s}\cdot1\cdot1 \\ \frac{100}{10.49}\frac{m}{s}=\frac{100}{10.49}\frac{m}{s}(\frac{1mile}{1609m})(\frac{3600s}{1hr}) \\ \frac{100}{10.49}\frac{m}{s}=\frac{100\cdot1\cdot3600}{10.49\cdot1609\cdot1}\frac{\text{mile}}{\text{hr}} \\ \frac{100}{10.49}\frac{m}{s}=\frac{360000}{16878}\text{ }\frac{\text{mile}}{\text{hr}} \\ \frac{100}{10.49}\frac{m}{s}=21.3\text{ }\frac{\text{mile}}{\text{hr}} \\ \text{then te answer is} \\ 21.3\text{ }\frac{\text{mile}}{\text{hr}} \end{gathered}[/tex]