Respuesta :

Given:

The coordinates are given as,

[tex]\begin{gathered} (x_1,y_1)=(-1,2) \\ (x_2,y_2)=(-7,-6) \end{gathered}[/tex]

The objective is to find the distance between the two points.

Explanation:

The general formula to find the distance between two coordinates is,

[tex]d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}\text{ . . . . . (1)}[/tex]

Substitute the given coordinates in equation (1),

[tex]d=\sqrt[]{(-7-(-1))^2+(-6-2)^2}[/tex]

On further solving the above equation,

[tex]\begin{gathered} d=\sqrt[]{(-6)^2+(-8)^2} \\ =\sqrt[]{36+64} \\ =\sqrt[]{100} \\ =10 \end{gathered}[/tex]

Hence, the distance between the two points is 10.