Answer
B) y = 3
Step-by-step explanation
Given the system of equations:
[tex]\begin{gathered} 3x+2y=12\text{ \lparen eq. 1\rparen} \\ 5x-y=7\text{ \lparen eq. 2\rparen} \end{gathered}[/tex]Isolating x from equation 1:
[tex]\begin{gathered} 3x+2y-2y=12-2y \\ 3x=12-2y \\ \frac{3x}{3}=\frac{12-2y}{3} \\ x=\frac{12}{3}-\frac{2}{3}y \\ x=4-\frac{2}{3}y\text{ \lparen eq. 3\rparen} \end{gathered}[/tex]Substituting equation 3 into equation 2 and solving for y:
[tex]\begin{gathered} 5(4-\frac{2}{3}y)-y=7 \\ 5\cdot4-5\cdot\frac{2}{3}y-y=7 \\ 20-\frac{10}{3}y-y=7 \\ 20-\frac{13}{3}y=7 \\ 20-\frac{13}{3}y-20=7-20 \\ -\frac{13}{3}y=-13 \\ (-\frac{3}{13})\cdot-\frac{13}{3}y=(-\frac{3}{13})\cdot-13 \\ y=3 \end{gathered}[/tex]