Respuesta :

As given by the question

There are given that the function:

[tex]f(r)=\sqrt[]{r+2}-5[/tex]

Now,

(a):

To find the value of f(-2), put r = -2 into the given function:

Then,

[tex]\begin{gathered} f(r)=\sqrt[]{r+2}-5 \\ f(-2)=\sqrt[]{-2+2}-5 \\ f(-2)=\sqrt[]{0}-5 \\ f(-2)=-5 \end{gathered}[/tex]

Hence, the value of f(-2) is -5.

(b):

To find the value of f(98), put r = 98 into the given function:

Then,

[tex]\begin{gathered} f(r)=\sqrt[]{r+2}-5 \\ f(98)=\sqrt[]{98+2}-5 \\ f(98)=\sqrt[]{100}-5 \\ f(98)=10-5 \\ f(98)=5 \end{gathered}[/tex]

Hence, the value of the f(98) is 5.

Now,

(c):

To find the value of f(x-2), put r = x-2 into the given function:

So,

[tex]\begin{gathered} f(r)=\sqrt[]{r+2}-5 \\ f(x-2)=\sqrt[]{x-2+2}-5 \\ f(x-2)=\sqrt[]{x}-5 \end{gathered}[/tex]

Hence, the value of f(x-2) is shown below;

[tex]f(x-2)=\sqrt[]{x}-5[/tex]