Respuesta :

we have that

The volume of a rectangular prism is given by the formula

[tex]V=L*W*H[/tex]

where

V=252 cm3

H=3 cm

W=x cm

L=W+5 --------> L=x+5

substitute given values in the formula

[tex]\begin{gathered} 252=(x+5)(x)(3) \\ 252=3x^2+15x \\ 3x^2+15x=252\text{ ---> equation that models the volume} \end{gathered}[/tex]

Solve the quadratic equation

using the formula

[tex]3x^2+15x-252=0[/tex]

a=3

b=15

c=-252

substitute

[tex]x=\frac{-15\pm\sqrt{15^2-4(3)(-252)}}{2(3)}[/tex][tex]x=\frac{-15\pm57}{6}[/tex]

The values of x are

x=7 cm and x=-12 cm ( is not a solution because is a negative number)

The width is 7 cm

therefore

Is not possible for the width to be 7.5 cm