Respuesta :

As per given by the question,

There are given that four point.

The point is,

[tex](-2,\text{ 0), (-1, 0), (0, -8), (2, 0)}[/tex]

Now,

From given point,

[tex](-2,\text{ 0), (-1, 0), (0, -8), (2, 0)}[/tex]

Then, the factor is,

[tex](x+2)(x+1)(x-2)[/tex]

Now, solve the above equation,

[tex](x+2)(x+1)(x-2)[/tex]

The factorial formd will be,

[tex]y=a\times(x+2)\times(x+1)\times(x-2)[/tex]

Now, find the value of "a" with the help of given point (0, -8).

So,

Puth the value of x =0, and y=-8 in above equation,

Then,

[tex]\begin{gathered} y=a\times(x+2)\times(x+1)\times(x-2) \\ -8=a\times(0+2)\times(0+1)\times(0-2) \\ -8=a(2)(1)(-2) \\ a=\frac{-8}{-4} \end{gathered}[/tex]

Then, a=2.

Now,

The value of a is 2.

And,

The polynomial in the factored form is,

[tex]y=2(x+2)(x+1)(x-2)[/tex]

Hence, the value of a is 2 and the polynomial in the factored form is,

[tex]y=2(x+2)(x+1)(x-2)_{}[/tex]