Given the image below, ⎯⎯⎯⎯⎯⎯⎯⎯⎯,⎯⎯⎯⎯⎯⎯⎯⎯,⎯⎯⎯⎯⎯⎯⎯⎯DY¯,EY¯,FY¯ are perpendicular bisectors of △△ABC.

Given the image below DYEYFY are perpendicular bisectors of ABC class=

Respuesta :

Remember that

A perpendicular bisector divides a segment into two equal parts

so

AD=DB=61.7

In the right triangle DYB

Apply the Pythagorean Theorem

[tex]YB^2=DY^2+DB^2[/tex]

where

YB=64.2

DB=61.7

substitute given values

[tex]\begin{gathered} 64.2^2=DY^2+61.7^2 \\ DY^2=64.2^2-61.7^2 \\ DY^=17.74 \end{gathered}[/tex]

Find out the value of EB

In the right triangle YEB

Apply the Pythagorean Theorem

[tex]YB^2=YE^2+EB^2[/tex]

where

YB=64.2

YE=51.2

substitute given values

[tex]\begin{gathered} 64.2^2=51.2^2+EB^2 \\ EB^2=64.2^2-51.2^2 \\ EB=38.73 \end{gathered}[/tex]