Respuesta :

Given the polynomial:

[tex]y=a^2+16a+64[/tex]

The x-intercepts are the points in which the polynomial crosses the x-axis. That is, are the points (x, 0).

To find these points, use the quadratic formula according to the steps below.

Step 01: Substitute the values in the quadratic formula.

For a equation y = ax² + bx + c, the x-intercepts are:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

In this question,

a = 1

b = 16

c = 64

Substituting the values:

[tex]\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ x=\frac{-16\pm\sqrt[]{16^2-4\cdot1\cdot64}}{2\cdot1} \end{gathered}[/tex]

Step 02: Solve the equation above.

Begin by solving the square and the multiplications:

[tex]x=\frac{-16\pm\sqrt[]{256^{}-256}}{2}[/tex]

Now, subtract the values inside the root.

[tex]x=\frac{-16\pm\sqrt[]{0}}{2}[/tex]

Solve the root:

[tex]x=\frac{-16\pm0}{2}[/tex]

And find the values of x:

[tex]\begin{gathered} x_1=\frac{-16-0}{2}=-\frac{16}{2}=-8 \\ x_2=\frac{-16+0}{2}=-\frac{16}{2}=-8 \end{gathered}[/tex]

Answer: The x-intercepts are: (-8, 0), (-8, 0).