Respuesta :
Explanation:
Consider the following right triangle:
In this triangle
x = adjacent side to the angle theta.
y = opposite side to the angle theta.
h= hypotenuse.
Now, by definition, we have the following trigonometric ratios:
[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ =}\frac{x}{h}[/tex][tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}=\frac{y}{h}[/tex][tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{y}{x}=\frac{y\text{ /h}}{x\text{ /h}}\text{ =}\frac{\sin(\theta)}{\cos(\theta)}[/tex]and according to the above trigonometric ratio, we get:
[tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]On the other hand, we get the following reciprocals:
[tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex]and
[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]we can conclude that the correct answer is:
Answer:The six trigonometric ratios:
[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ }[/tex][tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}[/tex][tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{\sin(\theta)}{\cos(\theta)}[/tex][tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex][tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex][tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]