Respuesta :

Explanation:

Consider the following right triangle:

In this triangle

x = adjacent side to the angle theta.

y = opposite side to the angle theta.

h= hypotenuse.

Now, by definition, we have the following trigonometric ratios:

[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ =}\frac{x}{h}[/tex][tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}=\frac{y}{h}[/tex][tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{y}{x}=\frac{y\text{ /h}}{x\text{ /h}}\text{ =}\frac{\sin(\theta)}{\cos(\theta)}[/tex]

and according to the above trigonometric ratio, we get:

[tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]

On the other hand, we get the following reciprocals:

[tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex]

and

[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]

we can conclude that the correct answer is:

Answer:

The six trigonometric ratios:

[tex]\cos(\theta)=\frac{adjacent\text{ side to the angle }\theta}{hypotenuse}\text{ }[/tex]

[tex]\sin(\theta)=\frac{opposite\text{ side to the angle }\theta}{hypotenuse}[/tex]

[tex]tan(\theta)=\frac{opposite\text{ side to the angle }\theta}{adjacent\text{ side to the angle }\theta}=\text{ }\frac{\sin(\theta)}{\cos(\theta)}[/tex]

[tex]csc(\theta)=\frac{1}{\sin(\theta)}[/tex]

[tex]sec(\theta)=\frac{1}{cos(\theta)}[/tex]

[tex]cotan(\theta)=\frac{\cos(\theta)}{\sin(\theta)}[/tex]

Ver imagen EpifanioV250401