Use the limit definition to find the equation for the slope of any tangent line, the slope of the tangent line at the given value, and the equation of the tangent line at the given value of x.

Answer:
Given function is:
[tex]f(x)=\frac{3}{x}\text{ at x=3}[/tex]To find the slope of any tanget line using limit definition.
we get,
Slope m is
[tex]m=\lim _{h\to0}\frac{f(3+h)-f(3)}{h}[/tex][tex]=\lim _{h\to0}\frac{\frac{3}{3+h}-1}{h}[/tex][tex]=\lim _{h\to0}\frac{3-3-h}{h(3+h)}[/tex][tex]=\lim _{h\to0}\frac{-h}{h(3+h)}[/tex][tex]=\lim _{h\to0}\frac{-1}{3+h}[/tex][tex]=-\frac{1}{3}[/tex]Slope is -1/3
f(x) at x=3 is,
Put x=3 in f(x), we get
[tex]\begin{gathered} f(3)=\frac{3}{3}=1 \\ f(3)=1 \end{gathered}[/tex]we know that, the equation of line with slope m and point (x1,y1) is given is
[tex]y-y1=m(x-x1)[/tex]Here m=-1/3 and (x1,y1)=(3,1)
Substitute we get,
[tex]y-1=-\frac{1}{3}(x-3)[/tex][tex]y-1=-\frac{1}{3}x+1[/tex][tex]y=-\frac{1}{3}x+2[/tex]The required equation of a tangent line at x=3 is y=-1/3 x+2.