Given :
There are 4 consecutive integers
Let the numbers are :
[tex]x,(x+1),(x+2),(x+3)[/tex]The sum of the numbers are 42
so,
[tex]x+(x+1)+(x+2)+(x+3)=42[/tex]Combine the like terms :
[tex]\begin{gathered} 4x+6=42 \\ 4x=42-6 \\ 4x=36 \\ \\ x=\frac{36}{4}=9 \end{gathered}[/tex]So, the value of the least integer = 9