Respuesta :

Answer:

[tex]\begin{gathered} (a)\text{ }V=706.5ft^3 \\ \mleft(b\mright)A=439.6ft^2 \\ \end{gathered}[/tex]

Explanation: We have to find the volume and surface area of the cylinder, with following informaton:

[tex]\begin{gathered} h\text{ =9ft} \\ r=5\text{ ft} \\ \end{gathered}[/tex]

(a) Volume:

[tex]\begin{gathered} V\text{ = Area Base }\times\text{ Height } \\ \\ \end{gathered}[/tex][tex]\begin{gathered} V=(\pi r^2)\times h \\ V=\pi\times(5ft)^2\times9ft=(225\times\pi)ft^3 \\ \therefore\leftarrow \\ V=706.5ft^3 \\ \end{gathered}[/tex]

(b) Surface are:

[tex]\begin{gathered} A=(\text{Area base }\times2)+(\text{ Height }\times\text{ circumfrence )} \\ A=\pi r^2\times2\text{ + h}\times2\pi r \\ A=\text{ }(2r^2+2hr)=\pi(2\times25+2\times9\times5)=\pi(50+90)=\pi(1400)=439.6ft^2 \\ \therefore\rightarrow \\ A=439.6ft^2 \end{gathered}[/tex]