Given:
[tex]\begin{gathered} (1)\rightarrow(-14)+81=81+(-14) \\ \\ (2)\rightarrow\frac{13}{17}\cdot\frac{17}{13} \\ \\ (3)\rightarrow101+(29+417)=(101+29)+417 \\ \\ (4)\rightarrow\frac{1}{3}(24+15)=\frac{1}{3}\cdot24+\frac{1}{3}\cdot15 \\ \\ (5)\rightarrow-72+0=-72 \end{gathered}[/tex]
Find-:
Match the item
Explanation-:
(1)
The commutative property of addition is:
So the commutative property of addition is:
[tex](-14)+81=81+(-14)[/tex]
(2)
The multiplicative inverse is:
So value is:
[tex]\frac{13}{17}\cdot\frac{17}{13}=1[/tex]
(3)
Associative property of addition
So the value is:
[tex]101+(29+417)=(101+29)+417[/tex]
(4)
Additive identity.
The property of additive identity is:
[tex]A+0=A[/tex]
So the value is:
[tex]-72+0=-72[/tex]
(5)
The distribution property is:
[tex]a(b+c)=ab+ac[/tex][tex]\frac{1}{3}(24+15)=\frac{1}{3}.24+\frac{1}{2}\cdot15[/tex]