Let Events A and B be described as follows:• P(A) = buying popcorn• P(B) = watching a movieThe probability that you watch a movie this weekend is 48% The probability of watching amovie this weekend and buying popcorn is 38%. If the probability of buying popcorn is 42%,are watching a movie and buying popcorn independent?

Let Events A and B be described as follows PA buying popcorn PB watching a movieThe probability that you watch a movie this weekend is 48 The probability of wat class=

Respuesta :

Solution:

Given that;

[tex]\begin{gathered} P(A)=42\%=0.42 \\ P(B)=48\%=0.48 \\ P(A\cap B)=38\%=0.38 \end{gathered}[/tex]

To find out if watching a movie and buying a popcorn are independent, the formula is

[tex]\begin{gathered} P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{0.38}{0.48}=0.79166 \\ P(A|B)=0.79\text{ \lparen two decimal places\rparen} \end{gathered}[/tex]

From the deductions above;

Hence, the answer is

[tex]No,\text{ because }P(A|B)=0.79\text{ and the }P(A)=0.42\text{ are not equal}[/tex]