Which set of ordered pairs (x,y) could represent a linear function?A. {(-7,3), (-2,1), (3,-1), (8,-3)}B. {(-2,8), (-1,4), (1,0), (3,-4)}C. {(-3,-6), (0,-5), (3,-3) (6,-2)}D. {(0,-8), (3,-5), (5,-2), (8,1)}

Answer:
A. {(-7,3), (-2,1), (3,-1), (8,-3)}
Explanation:
A linear function has a constant slope.
To determine the set of ordered pairs (x,y) that could represent a linear function, we find the slope for two pairs of points.
[tex]\text{Slope}=\frac{Change\text{ in y-axis}}{Change\text{ in x-axis}}[/tex]Option A
Using points (-7,3) and (-2,1).
[tex]\text{Slope}=\frac{3-1}{-7-(-2)}=\frac{2}{-7+2}=-\frac{2}{5}[/tex]Using points (-7,3) and (3,-1).
[tex]\text{Slope}=\frac{3-(-1)}{-7-3}=\frac{4}{-10}=-\frac{2}{5}[/tex]We see that the slopes are the same.
Therefore, the set of ordered pairs in Option A represent a linear function.