Respuesta :

Given the equation

[tex]\sqrt[]{15-2x}=x[/tex]

To find the solution of the equation given

By squaring both sides of the equation,

[tex](\sqrt[]{15-2x})^2=(x)^2[/tex][tex]\begin{gathered} (\sqrt[]{15-2x})^2=(x)^2 \\ 15-2x=x^2 \end{gathered}[/tex]

Equating the above equation to zero

[tex]\begin{gathered} x^2-(15-2x)=0 \\ x^2-15+2x=0 \\ x^2+2x-15=0 \end{gathered}[/tex]

Factorizing the above equation

[tex]\begin{gathered} x^2+2x-15=0 \\ x^2+5x-3x-15 \\ x(x+5)-3(x+5)=0 \\ (x-3)(x+5)=0 \end{gathered}[/tex]

The factors of the equation are

[tex]\begin{gathered} x-3=0 \\ x=3 \\ x+5=0 \\ x=-5 \\ x=3\text{ or -5} \end{gathered}[/tex]

Hence, the solution of the set is

[tex]-5,3[/tex]